3.8.4 \(\int \frac {x^3}{(a+b x^2) \sqrt {c+d x^2}} \, dx\) [704]

Optimal. Leaf size=68 \[ \frac {\sqrt {c+d x^2}}{b d}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{b^{3/2} \sqrt {b c-a d}} \]

[Out]

a*arctanh(b^(1/2)*(d*x^2+c)^(1/2)/(-a*d+b*c)^(1/2))/b^(3/2)/(-a*d+b*c)^(1/2)+(d*x^2+c)^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {457, 81, 65, 214} \begin {gather*} \frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{b^{3/2} \sqrt {b c-a d}}+\frac {\sqrt {c+d x^2}}{b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

Sqrt[c + d*x^2]/(b*d) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(b^(3/2)*Sqrt[b*c - a*d])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {x}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )\\ &=\frac {\sqrt {c+d x^2}}{b d}-\frac {a \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )}{2 b}\\ &=\frac {\sqrt {c+d x^2}}{b d}-\frac {a \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{b d}\\ &=\frac {\sqrt {c+d x^2}}{b d}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{b^{3/2} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 69, normalized size = 1.01 \begin {gather*} \frac {\sqrt {c+d x^2}}{b d}-\frac {a \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {-b c+a d}}\right )}{b^{3/2} \sqrt {-b c+a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

Sqrt[c + d*x^2]/(b*d) - (a*ArcTan[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[-(b*c) + a*d]])/(b^(3/2)*Sqrt[-(b*c) + a*d])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(317\) vs. \(2(56)=112\).
time = 0.10, size = 318, normalized size = 4.68

method result size
default \(\frac {\sqrt {d \,x^{2}+c}}{b d}+\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 b^{2} \sqrt {-\frac {a d -b c}{b}}}+\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 b^{2} \sqrt {-\frac {a d -b c}{b}}}\) \(318\)
risch \(\frac {\sqrt {d \,x^{2}+c}}{b d}+\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 b^{2} \sqrt {-\frac {a d -b c}{b}}}+\frac {a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 b^{2} \sqrt {-\frac {a d -b c}{b}}}\) \(318\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(d*x^2+c)^(1/2)/b/d+1/2*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+
2*(-(a*d-b*c)/b)^(1/2)*(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(
x-1/b*(-a*b)^(1/2)))+1/2*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))
+2*(-(a*d-b*c)/b)^(1/2)*(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/
(x+1/b*(-a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 133 vs. \(2 (56) = 112\).
time = 1.16, size = 306, normalized size = 4.50 \begin {gather*} \left [\frac {\sqrt {b^{2} c - a b d} a d \log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} + 4 \, {\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {b^{2} c - a b d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, {\left (b^{2} c - a b d\right )} \sqrt {d x^{2} + c}}{4 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}, \frac {\sqrt {-b^{2} c + a b d} a d \arctan \left (-\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {-b^{2} c + a b d} \sqrt {d x^{2} + c}}{2 \, {\left (b^{2} c^{2} - a b c d + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right ) + 2 \, {\left (b^{2} c - a b d\right )} \sqrt {d x^{2} + c}}{2 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b^2*c - a*b*d)*a*d*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x
^2 + 4*(b*d*x^2 + 2*b*c - a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*(b^2*c -
a*b*d)*sqrt(d*x^2 + c))/(b^3*c*d - a*b^2*d^2), 1/2*(sqrt(-b^2*c + a*b*d)*a*d*arctan(-1/2*(b*d*x^2 + 2*b*c - a*
d)*sqrt(-b^2*c + a*b*d)*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d + (b^2*c*d - a*b*d^2)*x^2)) + 2*(b^2*c - a*b*d)*sqr
t(d*x^2 + c))/(b^3*c*d - a*b^2*d^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\left (a + b x^{2}\right ) \sqrt {c + d x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**3/((a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]
time = 0.68, size = 64, normalized size = 0.94 \begin {gather*} -\frac {\frac {a d \arctan \left (\frac {\sqrt {d x^{2} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} b} - \frac {\sqrt {d x^{2} + c}}{b}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-(a*d*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^2 + c)/b)/d

________________________________________________________________________________________

Mupad [B]
time = 0.37, size = 57, normalized size = 0.84 \begin {gather*} \frac {\sqrt {d\,x^2+c}}{b\,d}-\frac {a\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d\,x^2+c}}{\sqrt {a\,d-b\,c}}\right )}{b^{3/2}\,\sqrt {a\,d-b\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x^2)*(c + d*x^2)^(1/2)),x)

[Out]

(c + d*x^2)^(1/2)/(b*d) - (a*atan((b^(1/2)*(c + d*x^2)^(1/2))/(a*d - b*c)^(1/2)))/(b^(3/2)*(a*d - b*c)^(1/2))

________________________________________________________________________________________